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Underwater Image Enhancement With
Hyper-Laplacian Reflectance Priors

Peixian Zhuang , Jiamin Wu, Fatih Porikli , and Chongyi Li , Member, IEEE

Abstract— Underwater image enhancement aims at improving
the visibility and eliminating color distortions of underwater
images degraded by light absorption and scattering in water.
Recently, retinex variational models show remarkable capacity
of enhancing images by estimating reflectance and illumination in
a retinex decomposition course. However, ambiguous details and
unnatural color still challenge the performance of retinex varia-
tional models on underwater image enhancement. To overcome
these limitations, we propose a hyper-laplacian reflectance priors
inspired retinex variational model to enhance underwater images.
Specifically, the hyper-laplacian reflectance priors are established
with the l1/2-norm penalty on first-order and second-order gra-
dients of the reflectance. Such priors exploit sparsity-promoting
and complete-comprehensive reflectance that is used to enhance
both salient structures and fine-scale details and recover the
naturalness of authentic colors. Besides, the l2 norm is found
to be suitable for accurately estimating the illumination. As a
result, we turn a complex underwater image enhancement issue
into simple subproblems that separately and simultaneously
estimate the reflection and the illumination that are harnessed
to enhance underwater images in a retinex variational model.
We mathematically analyze and solve the optimal solution of
each subproblem. In the optimization course, we develop an alter-
nating minimization algorithm that is efficient on element-wise
operations and independent of additional prior knowledge of
underwater conditions. Extensive experiments demonstrate the
superiority of the proposed method in both subjective results
and objective assessments over existing methods. The code is
available at: https://github.com/zhuangpeixian/HLRP.

Index Terms— Underwater enhancement, retinex variational,
hyper-laplacian reflectance, alternative optimization.

I. INTRODUCTION

UNDERWATER optical imaging has become an increas-
ing research field in recent years. However, underwater
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image enhancement is challenging due to the complicated
physical properties of underwater environments that lead to
the visibility degradation and color distortion of underwater
images [1]. A schematic diagram of underwater optical imag-
ing model is illustrated in Fig. 1(a) where the light captured by
the camera is mainly constituted by three components: a direct
component (the light reflected from the object that has not been
scattered), a forward scattering component (the light reflected
from the object that has been scattered at small angles), and
a backward scattering component (the light reflected not from
the target object but from floating particles). An underwater
image is regarded as a linear combination of these three
components. The forward scattering component causes blurred
image structures whereas the backward scattering veils image
edges and details. Simultaneously, as shown in Fig. 1(b),
different wavelengths of light are attenuated at different rates
in water. Concretely, the red light first disappears since it has
longest wavelength or minimum energy, while the blue and
green lights show the opposite case [2]. This property results
in the underwater images with bluish or greenish tone.

Many efforts have been made to promote the advancement
of underwater image enhancement. Among them, retinex vari-
ational models [3]–[7] exhibit the impressive performance.
Fu et al. [3] proposed a variational retinex enhancement model
(VRE), where the luminance of color-corrected underwater
image was enhanced by the l1 norm penalty on first-order
gradient of the reflectance and the l2 norm penalized first-order
gradient of the illumination. Xiong et al. [4] exploited
Gaussian curvature priors of both reflection and illumination
to construct a retinex-based variational model (GC). On the
basis of above, Zhao et al. [5] introduced a total general-
ized variation prior of the illumination into the variational
retinex model (TGV) [3] and combined first-order and second-
order total variation to approximate piecewise smoothness
and piecewise linear smoothness of the illumination. Further,
a Bayesian retinex model (L1) [6] was built with imposing
multi-order gradient priors on reflectance and illumination, and
the l1 norm was adopted to penalize first-order and second-
order gradients of the reflectance while the l2 norm was used
to enforce spatial smoothness and spatial linear smoothness
of the illumination. Besides, Cheng et al. [7] used a non-
convex variational retinex model, with the hyper-Laplacian
prior imposed on the first-order gradient of the reflectance
and hybrid priors penalized on the first-order gradient of
the illumination. However, different from [7], the proposed
method is a retinex variational model for enhancing underwa-
ter images with multi-order gradient priors of the reflectance
and illumination, where the hyper-Laplacian priors are verified
to be more accurate to regularize the first-order and second-
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Fig. 1. Schematic diagrams of (a) underwater imaging model and (b) light
attenuation at different rates in water.

order gradients of the reflectance, and the Gaussian priors
are effective to regularize the first-order and second-order
gradients of the illumination. Moreover, our underwater image
enhancement issue is turned into three simple subproblems
and its feasibility can be theoretically proved. Although the
above-mentioned retinex variational models have the remark-
able capacity of enhancing underwater images, two drawbacks
caused by inaccurate reflectance priors are illustrated in Fig. 2.
As shown in Fig. 2, 1) significant structures and fine details are
ambiguous in enhanced underwater images using four retinex
variational models (GC [4], VRE [3], TGV [5] and L1 [6]),
and 2) color naturalness of underwater images is ineffectively
preserved by these models. To overcome these limitations,
we develop a novel retinex variational algorithm to enhance
underwater images with hyper-laplacian reflectance priors. Our
main contributions are summarized as follows:

• To the best of our knowledge, this is the first work
for underwater image enhancement via the non-convex
modeling on multi-order gradients of the reflectance.

• By investigating the multi-order gradient distributions of
the reflectance, we found that hyper-Laplacian distri-
butions better fit empirical distributions than Gaussian
and Laplacian distributions, and the l1/2-norm is more
accurate than the l2 or l1 norm for penalizing multi-order
gradients of the reflectance. As a result, our method
can enhance structures and fine-scale details well and
effectively recovers the color of underwater images.

• We disentangle a complex underwater image enhance-
ment issue into two simple subproblems and theoretically
demonstrate its feasibility. Meanwhile, an alternating iter-
ative optimization strategy with fast pixel-wise operations
is proposed to optimize the optimal solutions.

• A large amount of experiments are conducted to demon-
strate the superiority of the proposed method. Besides,
two challenging applications are tested to validate the
utility of our method in downstream applications.

II. RELATED WORK

Underwater image enhancement methods can be roughly
organized into three main categories.

A. Model-Based Methods

The physical model-based methods first establish physical
imaging models, then estimate latent model parameters with
various priors or assumptions, and finally invert degradation

process to recover clear underwater scenes. With considering
the physical mechanism of underwater image degradation,
Drews et al. [8], [10] proposed an adaptation of the DCP
named underwater DCP (UDCP) to estimate the underwater
transmission, and made use of blue and green color channels
to enable a significant improvement. Galdran et al. [9] pre-
sented an automatic red channel method to exact the dark
channel from reversed red and blue-green channels, which
recovers colors associated to short wavelengths for compen-
sating the lose of contrast. Peng and Cosman [11] presented
a depth estimation method based on image blurriness and
light absorption (IBLA) to estimate more accurate background
light and underwater scene depth. A generalized dark channel
prior (GDCP) [12] was used to estimate underwater scene
transmission according to depth-dependent color variation.
The authors [13] combined DCP with wavelength-dependent
compensation and image dehazing to remove the effects
of haze and blur. In addition, the Sea-thru method [1]
demanded the true depth map as an additional input to
recover underwater color with the revised image formation
model, and used spatially varying illuminant estimate to obtain
the depth-dependent attenuation coefficient. In general, these
model-based methods are sensitive to priors and assump-
tions and produce unsatisfactory results in some underwater
scenes.

B. Model-Free Methods

The model-free methods adjust image pixel values to
yield visually pleasing underwater images without considering
physical models. Hitam et al. [15] built a mixture contrast
limited adaptive histogram equalization to improve contrast
of underwater images and reduce artifacts. Zhang et al. [16]
extended a multi-scale retinex method for underwater image
enhancement. Li et al. [14] made an attempt to estimate the
noise map in a robust retinex model, which adopted a fidelity
term for the first-order gradient of the reflectance. Under
the framework [14], Ren et al. [18] introduced a low-rank
prior into the retinex decomposition to suppress noise in
the reflectance. Ancuti et al. [2] developed a fusion-based
enhancement method to blend different filters on single under-
water input, and employed a multi-scale fusion strategy by
applying white balance and global contrast techniques to
improve raw images. A fusion approach [17] enhanced con-
trast and color by blending color-compensated and white-
balanced underwater images. Usually, these model-free meth-
ods are difficult to maintain better consistency of subjective
and objective results. Moreover, the over-enhancement may
appear in the outputs enhanced by model-free methods.

C. Data-Driven Methods

Deep learning has made significant advances on low-level
vision tasks, such as image dehazing [19], denoising [20],
super-resolution [21], etc. However, it is difficult to synthesize
realistic underwater images for training deep networks. This
is because underwater image formation models depend on
lighting conditions, specific scenes, water temperature and
turbidity. WaterGAN [22] was proposed to correct the color
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Fig. 2. Illustration of existing retinex variational models for underwater image enhancement. Top row: raw images (Raw), the enhanced results using GC
[4], VRE [3], TGV [5], L1 [6], and the proposed model (Ours). Bottom row: zoomed-in views of the red box regions of top row. Our method enhances the
structure and fine-scale details well and effectively recovers the color of the underwater image.

Fig. 3. Performance of different reflectance priors for enhancing underwater
images. Columns 1 to 5: raw image, enhanced results using retinex varia-

tional models based on Gaussian reflectance prior e−‖�R‖2
2 (L2), Laplacian

reflectance prior e−‖�R‖1 (VRE [3]), multi-order Laplacian reflectance priors
e−‖�R‖1 · e−‖�R‖1 (L1 [6]), and hyper-Laplacian reflectance priors (Ours),
respectively. Top row: reflectance estimations. Middle and bottom rows:
enhanced images and the corresponding enlargements in the red box region
of Raw. Our model adopts hyper-Laplacian reflectance priors to accurately
reconstruct reflectance estimation, thus effectively overcoming the limitations
of ambiguous structures and color unnaturalness.

of underwater images, which uses the generative adversarial
network [23] to simulate realistic underwater images. Based
on the cycle-consistent adversarial network (CycleGAN) [24],
Li et al. [25] proposed a weakly supervised underwater
color transfer model to relax the need of paired underwa-
ter images for training deep networks. An underwater gen-
erative adversarial networks [26] used the CycleGAN and
simulated a degradation process to generate paired underwa-
ter images. Lately, Li et al. [27] synthesized paired train-
ing data based on underwater scene prior and proposed an
underwater image enhancement network (UWCNN). Besides,
Li et al. [28] constructed an Underwater Image Enhance-
ment Benchmark (UIEB) and proposed an underwater image
enhancement network (Waternet) trained on this benchmark.
These data-driven methods commonly demand a large amount
of underwater images for training. In addition, their robustness
and generalization still lag behind conventional state-of-the-art
methods.

III. MOTIVATION OF HYPER-LAPLACIAN REFLECTANCE

PRIORS

The aforementioned techniques have advanced the develop-
ment of underwater image enhancement, among which retinex

variational models [3]–[6] are promising alternatives to under-
water image enhancement. The core of these retinex variational
methods is to build a retinex variational model with different
reflectance (R) priors and illumination priors. Unfortunately,
as previously presented in Fig. 2, significant edges and fine
details of underwater images are easily ambiguous by using
existing retinex variational models, along with the appearance
of underwater color unnaturalness. To study the essence behind
these limitations, we investigate different reflectance priors
used in existing retinex variational models for enhancing
underwater images as shown in Fig. 3, including Gaussian
reflectance prior e−‖�R‖2

2 (L2), Laplacian reflectance prior
e−‖�R‖1 (VRE [3]), multi-order Laplacian reflectance priors
e−‖�R‖1 ·e−‖�R‖1 (L1 [6]), where � is the first-order gradient
operator and � is a second-order Laplacian filter.

In Fig. 3, we can see that reflectance estimations recon-
structed by the L2 and VRE methods are inaccurate, which
leads to ambiguous structures and color unnaturalness of
enhanced underwater images. Although the L1 method adds
second-order gradient prior of the reflectance to compensate
for accurate estimation of the reflectance, unsatisfactory results
of both structural restoration and color naturalness are still
existing in the enhanced image and corresponding enlarge-
ment. Tracing back to the reason, these limitations of retinex
variational models are caused by inaccurate reflectance priors.

To achieve more accurate reflectance priors, we develop
hyper-Laplacian reflectance priors that consist of first-order
gradient reflectance prior e−‖�R‖1/2 and second-order gradi-
ent reflectance prior e−‖�R‖1/2 . To be specific, we collected
100 high quality underwater images displayed in Fig. 4(a)
where various underwater scenes contain different types of
underwater objects, background color, and luminance. Fol-
lowing previous works [3], [6], we converted each under-
water image from RGB color space to HSV color space
that is more robust to the illumination variations [29]. Based
on the retinex theory [30], the value channel in the HSV
color space is decomposed into the reflectance component
R and the illumination component I. In Fig. 4(c-e), we plot
the fitting curves to empirical first-order (�R) and second-
order (�R) gradient distributions of the reflectance in the
logarithm domain. The empirical first-order and second-order
gradient data (black star-dot) are generated by averaging on
the reflectances of the 100 high quality underwater images,
along with fitting Gaussian (e−‖�R‖2

2 and e−‖�R‖2
2 , blue solid-

line), Laplacian (e−‖�R‖1 and e−‖�R‖1 , green solid-line), and
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Fig. 4. Statistic of hyper-Laplacian reflectance priors. (a) A snapshot
of 100 high quality underwater images. (c-e) Fitting curves to multi-order
gradient distributions of reflectance in log domain. The empirical multi-order
gradient data (black star-dot) are generated by averaging on the reflectances of
the 100 high quality underwater images, along with fitting Gaussian (l2 norm,
blue solid-line), Laplacian (l1 norm, green solid-line), and hyper-Laplacian
(l1/2 norm, red solid-line) distributions. As shown, the hyper-Laplacian dis-
tributions better fit the empirical distributions than the Gaussian and Laplacian
distributions. (b) The root mean squared errors (RMSE) correspond to (c-e).
The hyper-Laplacian distributions yield smaller RMSE than the Gaussian and
Laplacian distributions in multi-order gradient domains.

hyper-Laplacian (e−‖�R‖1/2 and e−‖�R‖1/2 , red solid-line) dis-
tributions. Meanwhile, Fig. 4(b) reports the root mean squared
errors (RMSE) corresponding to Fig. 4(c-e). By studying the
above results, we draw that the empirical distributions of
multi-order gradient data are highly peaked at zero and can
be well approximated by the hyper-Laplacian distributions,
while the Gaussian and Laplacian distributions yield larger

fitting errors. Thus, the hyper-Laplacian distributions better
fit the empirical distributions than the Gaussian and Laplacian
distributions. Consequently, this finding motivates us to model
first-order and second-order gradients of the reflectance with
hyper-Laplacian priors, named hyper-Laplacian reflectance
priors e−‖�R‖1/2 · e−‖�R‖1/2 . Correspondingly in the form of
optimization modeling, the l1/2 norm is more accurate than
both the l2 norm and the l1 norm for the reflectance penalty.

Further, we couple the proposed hyper-laplacian reflectance
priors with the same retinex variational framework as other
methods for enhancing underwater images. Fig. 3 suggests
that the proposed hyper-Laplacian reflectance priors can recon-
struct more accurate reflectance estimation, and are effective
in overcoming the limitations of ambiguous structures and
color unnaturalness. Therefore, our method yields preferable
results when compared with other retinex variational models
that employ the Gaussian and Laplacian reflectance priors.
The consistency results are also presented in Fig. 2, where
hyper-laplacian reflectance priors are capable of enhancing
edges and details and recovering colors.

We dissect multi-order gradient priors of reflectance and
illumination in the HSV color space. The results corresponding
to two examples are presented in Fig. 5, where we observe that
there are abundant image edges and details in first-order and
second-order gradients of the reflectance. An intriguing finding
is that the reflectance contains significant edges and fine-
scale details, and the histogram distributions of its multi-order
gradients are more sparse than those of the illumination,
which is consistent with the above-mentioned hyper-Laplacian
priors. On the contrary, the illumination is found to present
relative smoother than the reflectance. This finding supports
that the l2 norm is appropriate and efficient to model first-
order (�I) and second-order (�I) gradients of the illumination
with Gaussian smoothing priors (e−‖�I‖2

2 and e−‖�I‖2
2 ).

IV. OUR METHOD

The overview of the proposed method is shown in Fig. 6.
First, a simple yet effective color correction based on statistical
method [3] is adopted to restore both color and naturalness of
a degraded underwater image O. Then, following works [3],
[31], [32] that avoid potential color artifacts and reduce com-
putational complexity, the color-corrected underwater image
U is converted from RGB color space to HSV color space
that is more robust to illumination variations. Thus the retinex
theory [30] can handle the illumination that adaptively varies
brightness and color. Next, we adopt the retinex model to deal
with the value channel. The value channel V in the HSV
color space is first decomposed into the reflectance layer R
and the illumination layer I. The proposed retinex variational
model with hyper-Laplacian reflectance priors is performed
to enhance R and I simultaneously. After that, a Gamma
correction scheme [31], [32] method is used to adjust the
enhanced illumination I and thus the enhanced value channel
Ve is generated by a product of the enhanced reflectance
and the adjusted illumination Ie. At last, the final enhanced
image is yielded by converting the enhanced HSV image to
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Fig. 5. Multi-order gradient priors of reflectance and illumination in HSV color space. (a) high-quality underwater image. (b) the value channel. (c) the
reflectance. (d) the illumination. (e)(f) and (h)(i): first-order gradient in horizontal and vertical directions of (c) and (d), respectively. (g) and (j): second-order
gradient of (c) and (d), respectively. (k)-(p): corresponding histograms of (e)-(j), respectively. There are abundant structures in first-order and second-order
gradients of the reflectance. The reflectance contains significant edges and fine-scale details, and its multi-order gradients have more sparse histogram
distributions than those of the illumination. The illumination presents relative smoother than the reflectance.

RGB color space. We detail model construction and numerical
optimization of the proposed method as follows.

A. Model Construction

The color corrected U is first converted from RGB color
space to HSV color space that is more stabilized to illu-
mination variations. Based on the retinex theory [30], V
is decomposed into the reflectance R and the illumination
I. After that, the proposed retinex variational model with
hyper-Laplacian reflectance priors is performed to enhance R
and I. By Bayes theorem, the retinex probabilistic model for
enhancing R and I is established as a posterior distribution:

p(R, I|V) ∝ p(V|R, I)p(R)p(I), (1)

where p(R, I|V) is the posterior distribution, p(V|R, I) is the
likelihood, p(R) and p(I) denote the priors on the reflectance
and the illumination, respectively. As follows, we define these
terms and then describe our numerical optimization.

1) Likelihood p(V|R, I): The retinex decomposition model
is expressed as V = R � I, the value channel V is ideally
seen as a product of the reflectance R and the illumination
I, where � denotes the element-wise multiplication. The
estimated error e = V−R�I is generally modeled as a set of
independent and identically distributed noise random variables
with a Gaussian distribution of zero mean and variance σ 2.
The likelihood p(V|R, I) is defined as

p(V|R, I) = N (e|0, σ 21), (2)

where 1 represents the identity matrix.
2) Hyper-Laplacian Reflectance Priors p(R): Fig. 3 has

shown that multi-order gradient reflectance priors ( e−‖�R‖1 ·
e−‖�R‖1 , L1 [6]) outperform single-order gradient reflectance
prior (e−‖�R‖1 , VRE [3]) in terms of reflectance estimation
accuracy and underwater structure enhancement. Then as
seen from Fig. 5(e)-(g), there are abundant underwater image
structures, containing significant edges and fine-scale details,

in first-order and second-order gradients of the reflectance.
These results suggest that multi-order gradient priors are
suitable for underwater structure enhancement. For capturing
complete structures and fine-scale details from underwater
images, multi-order gradient priors are adopted to design
p(R). We found that the histograms of multi-order gradients
of the reflectance (e.g., Fig. 5(k)-(m)) appear more sparse than
those of the illumination (e.g., Fig. 5(n)-(p)). Additionally, the
results of Fig. 4 indicate that the empirical distributions of
multi-order gradient of the reflectance are better approximated
by the hyper-Laplacian distributions, while the Gaussian and
Laplacian distributions yield larger fitting errors. Eventually,
these findings inspire us to model first-order and second-order
gradients of the reflectance with the hyper-Laplacian priors,
and the l1/2 norm is more accurate than the l2 and l1 norms for
the reflectance. Therefore, first-order (�R) and second-order
(�R) gradient distributions of the reflectance can be defined
as hyper-Laplacian distributions with location zero and scales
s1, s2,

p(�R) = HL(�R|0, s11), (3)

p(�R) = HL(�R|0, s21), (4)

where HL(x |0, s) = e− |x |
1
2

s is an element-wise repre-
sentation form of hyper-Laplacian distribution with the
l1/2 norm, and the second-order Laplacian filter � =
[0, 1, 0; 1,−4, 1; 0, 1, 0].

Hyper-Laplacian reflectance priors p(R) are defined as

p(R) = p(�R)p(�R), (5)

3) Gaussian-Smoothing Illumination Priors p(I): To
acquire complementary and complete structures from under-
water images, multi-order gradient priors are imposed to
enforce spatial smoothness and spatial linear smoothness of
the illumination. By observing Fig. 5(h)-(j), we found that
substantial smooth structures are in first-order and second-
order gradients of the illumination, complementary to those of
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Fig. 6. Flowchart of the proposed method.

the reflectance. As seen in Figs. 5(h)-(j) and (n)-(p), we found
that the illumination has complementary structures and its
multi-order histograms are shown to be relative smoother
than those of the reflectance. This finding motivates that the
Gaussian distributions of zero mean and variances σ 2

3 , σ 2
4

are adopted to model first-order (�I) and second-order (�I)
gradient priors of the illumination,

p(�I) = N (�I|0, σ 2
3 1), (6)

p(�I) = N (�I|0, σ 2
4 1), (7)

Gaussain smoothing illumination priors p(I) are expressed as

p(I) = p(�I)p(�I), (8)

In addition, the constrain V � I guarantees the prior that R is
in the range of [0,1].

4) Final Objective E(R, I): The maximum a posteri-
ori (MAP) problem Eq. (1) is transformed to an energy

minimization problem that jointly estimates the reflectance and
the illumination, i.e., E(R, I) = −log(p(R, I|V)). We take the
likelihood Eq. (2), hyper-Laplacian reflectance priors Eq. (5),
illumination priors Eq. (8) and illumination constrain into Eq.
(1), and the final objective function E(R, I) is established:
E(R, I) = ‖R � I − V‖2

2 + λ1‖�R‖1/2 + λ2‖�R‖1/2

+ζ1‖�I‖2
2 + ζ2‖�I‖2

2 s.t.V � I, (9)

where these scale parameters (λi = σ 2/si when i = 1, 2,
and ζi = σ 2/σ 2

i when i = 3, 4) are positive to balance
above terms. The role of each term in Eq. (9) is explained
as follows. 1) ‖R � I − V‖2

2 is the data fidelity that imposes
the l2 norm to enforce the consistency of R � I to V. 2)
‖�R‖1/2 and ‖�R‖1/2 are the reflectance penalty that adopts
the accurate l1/2 norm to enforce the sparsity of first-order
and second-order gradients of the reflectance, corresponding
to hyper-Laplacian reflectance priors. 3) ‖�I‖2

2 and ‖�I‖2
2 are

the illumination penalty that applies the appropriate l2 norm to
enforce the sparsity of first-order and second-order gradients
of the illumination, with respect to Gaussian-smoothing illu-
mination priors. 4) V � I denotes the illumination constraint
to ensure R ∈[0,1].

B. Numerical Optimization

To address the minimization problem Eq. (9) where there
are two unknown variables R and I, we develop an effi-
cient alternating iteration optimization strategy to find a local
optimal solution to the non-convex objective function via the
alternating direction method of multipliers (ADMM) [33] with
iterative half thresholding [34], [35] and fast Fourier transform
(FFT) [36]. It is intractable to directly optimize Eq. (9) due to
two non-convex l1/2 norms, therefore, two auxiliary variables
d, h and two errors m, n are introduced to reformulate Eq.
(9) into the following form:
E(R, I) = ‖R � I − V‖2

2 + λ1{η1‖d‖1/2 + ‖�R − d + m‖2
2}

+λ2{η2‖h‖1/2 + ‖�R − h + n‖2
2} + ζ1‖�I‖2

2

+ζ2‖�I‖2
2 s.t.V � I, (10)

where η1 and η2 are positive parameters to weigh above terms.
Then, the complex problem Eq. (10) is decomposed into

three simple subproblems which can be individually optimized
and iteratively cycled through. Their forms at the kth iteration
are written:
(P1) dk = arg min

d
‖�Rk−1 − d + mk−1‖2

2 + η1‖d‖1/2,

hk = arg min
h

‖�Rk−1 − h + nk−1‖2
2 + η2‖h‖1/2,

(11)

(P2) Rk = arg min
R

‖R − V

Ik−1 ‖
2

2
+ λ1‖�R − dk + mk−1‖2

2

+λ2‖�R − hk + nk−1‖2
2,

mk = mk−1 + �Rk − dk,

nk = nk−1 + �Rk − hk, (12)

(P3) Ik = arg min
I

‖I − V

Rk
‖

2

2
+ ζ1‖�I‖2

2 + ζ2‖�I‖2
2, (13)
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Note that ‖R · Ik−1 − V‖2
2 and ‖I · Rk − V‖2

2 are respectively

transformed into ‖R − V
Ik−1 ‖2

2
and ‖I − V

Rk ‖2

2
for convenience.

These subproblems have closed-form solutions and their
updates are detailed below.

Update (P1): Iterative Half Thresholding. First initialize
R0 = 0, m0 = 0, n0 = 0. Then an iterative half thresholding
algorithm [34], [35] is adopted to update the auxiliary variables
dk and hk at the kth iteration:

dk
h = Hη1μ, 1

2
(dk−1

h − μ(dk−1
h − �hRk−1 − mk−1

h )),

dk
v = Hη1μ, 1

2
(dk−1

v − μ(dk−1
v − �vRk−1 − mk−1

v )),

hk = Hη2μ, 1
2
(hk−1 − μ(hk−1 − �Rk−1 − nk−1)), (14)

where Hη1μ, 1
2
(·) and Hη2μ, 1

2
(·) denote the half thresholding

operators concretely defined in [34] and [35]. μ > 0 is a step
size parameter which is generally set to the reciprocal of the
total number of image pixels. �h = [−1, 1] and �v = [−1; 1]
denote first-order derivative operator at horizontal and vertical
directions, respectively.

Update (P2): Reflectance Reconstruction. Like cen-
ter/surround retinex methods [37], [38], a Gaussian lowpass
filtering of V is used to be an initialization of I0. Since (P2)
is a least square problem that includes three convex functions,
the first-order derivative of Eq. (12) is set to 0, and the fast
Fourier transformation (FFT) [36] is used to accelerate the
solution process. The closed-form solution Rk is updated:

Rk = F−1{F(V/Ik−1) + λ1�1 + λ2�2

F(1) + λ1�1 + λ2�2
}, (15)

where F denotes the FFT operator, F∗ and F−1 are con-
jugate transpose and inverse operators of F , respectively.
�1 = F∗(�h) � F(dk

h − mk−1
h ) + F∗(�v ) � F(dk

v − mk−1
v ),

�2 = F∗(�) � F(hk − nk−1), �1 = F∗(�h) � F(�h) +
F∗(�v ) � F(�v ), and �2 = F∗(�) � F(�). The first-order
and second-order derivative operators can be diagonalized by
using the FFT for avoiding large-scale matrix inversion, and
all operations of above calculations are performed component-
wise. Following ADMM, mk and nk are updated by

mk
h = mk−1

h + �hRk − dk
h,

mk
v = mk−1

v + �vRk − dk
v ,

nk = nk−1 + �Rk − hk, (16)

Update (P3): Illumination Reconstruction. Similar to
above reflectance reconstruction, (P3) is a least square prob-
lem including three convex functions, and the first-order
derivative of Eq. (13) is set to 0, then the FFT is adopted to
speed up the solving process. Finally, the closed-form solution
of the illumination Ik is updated by

Ik = F−1{ F(V/Rk)

F(1) + ζ1�1 + ζ2�2
}, (17)

All operations of above calculations are performed component-
wise. With respect to the illumination constraint V � I
in Eq. (10), following the previous work [3], the updated
illumination is corrected through Ik = max(Ik, V).

Element-wise operations of FFT and half thresholding are
fast implemented at few iterations. I and R are efficiently and

jointly estimated. The main steps of the proposed algorithm
are sketched in Algorithm 1. What is more, the convergence
of the proposed algorithm is theoretically proved in the sup-
plementary material1.

Algorithm 1 Outline of Optimizing E in Eq. (10)

V. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the superior performance of the proposed
method, qualitative evaluation, quantitative assessment, abla-
tion study, and application test are conducted respectively. Due
to the limited space, more experimental results can be found
in the supplementary material1.

Test Data. We first conduct comparisons on a large number
of underwater images that contain various scenes and diverse
degradations, where 300 underwater images are collected
from [2], [3], [9], [13], [28], [39], [40]. We then perform
comparative experiments on 60 challenging underwater images
from the Underwater Image Enhancement Benchmark Dataset
(UIEBD) [28], which includes mist and under-exposure under-
water images in deep sea with non-uniform illumination, and
turbid and yellowish underwater images due to strongly atten-
uated blue channels. Besides, we implement an experiment
of enhancing a challenging underwater video that involves
1500 frames with five types of degenerate colors.

Parameter Settings. In following experiments, the regular-
ization parameters λ1, λ2, ζ1 and ζ2 are set to 1e − 4, 1e − 3,
1e−5 and 1e−3, respectively. Half thresholding parameters η1
and η2 are set to 1e − 3. The number of maximum iteration T
is set to 5 for a trade-off between algorithm convergence and
computation efficiency. The proposed method is insensitive to
the parameter setting, and this reason lies on that the parame-
ters λ1 and λ2 control the regularization degree of multi-order
reflectance gradients, the parameters ζ1 and ζ2 control the
regularization degree of multi-order illumination gradients,
and the parameters η1 and η2 change the thresholding step
in the iterative half thresholding operation. These parameters
are independent on input image type. The empirical settings
of all parameters in our method are universal for different test
data.

1https://github.com/zhuangpeixian/HLRP
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Compared Methods. We compare our method against eight
methods, including two retinex variational methods (VRE [3]
and L1 [6]), one model-free method (CBF [17]), three
model-based methods (UDCP [10], IBLA [11], GDCP [12]),
two data-driven methods (UWCNN [27] and Waternet [28]).
We use the released codes of VRE [3], UDCP [10],
UWCNN [27], Waternet [28], and L1 [6] to yield their
results. We use the code of CBF [17] re-implemented by
other researchers to produce results. The execution codes of
IBLA [11] and GDCP [12] are provided by the authors. For
UWCNN [27], we adopt the UWCNN-typeI model because
of its more robust performance. In order to make a fair
comparison, we refer to corresponding literatures and set their
parameters according to default settings suggested by the
authors.

Evaluation Metrics. For the 300 underwater images with-
out the corresponding ground truth images, we employ
the four non-reference evaluation metrics UIQM [41],
UCIQE [42], PCQI [43], and Entropy [39] to measure the per-
formance of different methods. UIQM is a linear composition
of UISM (Underwater Image Sharpness Measure), UIConM
(Underwater Image Contrast Measure), and UICM. A higher
UIQM indicates a better tradeoff among sharpness, contrast,
and colorfulness. UCIQE is a linear combination of chroma,
saturation, and contrast (Conl ), which quantifies nonuniform
color cast, blurring, and low-contrast. A higher UCIQE sug-
gests a better tradeoff among chroma, saturation, and contrast.
PCQI assesses perceptual distortions between enhanced and
raw images from mean intensity, signal strength and struc-
ture. A larger PCQI means better contrast quality. Entropy
represents average information of an image. A higher Entropy
indicates more information contained in the image. Further,
we use the four non-reference metrics UISM, UIConM, Conl ,
and NVE (Number of restored Visible Edges in blind contrast
enhancement assessment [44]) to assess structure and contrast
enhancement performance of all methods, and higher values of
these indicators suggest better results of structure and contrast
enhancement. To evaluate color correction accuracy of all
methods, we use two full-reference metrics PSNR and RMSE
to compute the color dissimilarity between the ground-truth
ColorChecker and their results, and one non-reference metric
LOE (lightness order error [49]) to measure the color distortion
between the ColorChecker in the raw image and the results in
the enhanced images. A higher PSNR or a lower RMSE means
that the result is closer to the ground-truth color. A lower LOE
denotes that the result is less degraded from color distortion.

A. Qualitative Evaluation

We first conduct visual comparisons of different methods
on the 300 underwater images. Visual results of underwa-
ter images with different color degradations are shown in
Figs. 7-9. As shown, our method can solve the limitations of
ambiguous structure and color unnaturalness that appear in
both VRE and L1 with Laplacian reflectance priors. In com-
parison, our method outperforms other methods in terms of
structures and details enhancement, color and naturalness
rehabilitation, contrast promotion and artifacts suppression.

TABLE I

QUANTITATIVE MEASUREMENTS OF DIFFERENT METHODS AVERAGED ON
THE 300 UNDERWATER IMAGES. THE BEST RESULT IS IN RED UNDER

EACH CASE

UDCP aggravates color casts and poorly performs in contrast
improvement. IBLA has positive impacts on color correction
and contrast improvement, but an over-enhanced result is seen
in the first comparison image of Fig. 7. Although underwater
image structures are improved by CBF, white-balanced results
are shown in Figs. 7 and 8. GDCP restores underwater image
colors and structures, but over-brightness results present in the
enhanced images. UWCNN has poor results of color recovery
and structure improvement when training on special types of
synthetic underwater images. Waternet turns raw images into
good results of color correction and contrast improvement,
however, color naturalness and detail enhancement are subop-
timal in Figs. 7 and 9. By contrast, our method can robustly
recover colors and naturalness and significantly enhance struc-
tures and contrast when enhancing various types of underwater
images, which suggests that our hyper-Laplacian reflectance
priors are effective in different underwater scenes.

Then, we demonstrate the advantage of the proposed method
on the 60 challenging underwater images. Fig. 10 shows
the enhanced results using different methods on four typi-
cal underwater images. UDCP and UWCNN fail to remove
undesirable yellow layers and produce color distortions in the
enhanced images. IBLA and GDCP acquire better contrast but
cannot completely eliminate yellow interferences, and reddish
deviations appear in their results. CBF and Waternet clean
yellowish layers and enhance structures, but introduce artificial
purple colors in the third comparison image. Compared with
both VRE and L1, our method is superior to enhancing struc-
ture and contrast and restoring authentic color and naturality.
Clearer details and more natural colors are yielded by the
proposed method, which demonstrates the robustness of our
method in challenging underwater scenes. Besides, we perform
an experiment of enhancing a challenging underwater video
to show the scalability of our model. The enhanced video by
our method is available in the supplementary material, and
partial results are exhibited in Fig. 11. Our method can clean
color casts, recover color naturalness, and boost structures
and contrasts. Additionally, our results of different frames are
consistent and impressive in various underwater scenes.

We further test the ColorChecker 24 X-Rite Chart
image [39] to exhibit color correction accuracy of our method.
As shown in Fig. 12, our method is superior to both VRE
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Fig. 7. Visual comparison of different methods on greenish underwater images.

Fig. 8. Visual comparison of different methods on bluish underwater images.

and L1 in terms of color detail enhancement and color
naturalness restoration. UDCP and IBLA recover most colors
but cannot remove color casts in the fourth row and second or
third column. CBF has impressive color restoration, but tends
to generate over-whitened results. UWCNN fails to recover
authentic color and presents entire darkness. Waternet restores
color tone but cannot yield more color details. In comparison,
our method is capable of removing color casts and unveiling
more color details. This test results suggest the superiority of
our method in rehabilitating genuine underwater colors.

B. Quantitative Assessment

We quantify the performance of different methods in terms
of UIQM, UCIQE, PCQI, and Entropy on the 300 underwater
images. Table I reports the average values of four metrics.
As presented, our method outperforms both VRE and L1 in
terms of UIQM, UCIQE, PCQI and Entropy, which demon-
strates that our hyper-Laplacian reflectance priors are more

superior to overcoming the limitations of ambiguous structure
and color unnaturalness. Compared with the rest methods, our
method achieves a higher UIQM value, which suggests better
performance of our method in colorfulness restoration and
structure enhancement. Our method yields the best Entropy
and recovers more information of underwater images. The best
UCIQE by our method is with respect to a promising ability of
removing non-uniform color casts and blurring and promoting
local details and global contrast. Moreover, the best PCQI
by our method is superior to other methods, which indicates
that our method is more effective in narrowing perceptual
distortions between enhanced and raw underwater images.
In comparison, our method yields better metric values, which
corresponds to remarkable structure and contrast improvement
and preferable color and naturalness restoration.

Further, we compare our method with the eight methods on
raw underwater images with four typical color degradations.
In Table II, five metrics UISM, UIConM, Conl , NVE and
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Fig. 9. Visual comparison of different methods on underwater images with other color degenerations.

Fig. 10. Comparison of different methods on challenging underwater images from UIEBD [28].

Fig. 11. Underwater video enhanced by our method.

LOE are used to assess enhanced results. As reported, the
proposed method substantially improves all metrics compared
with VRE and L1, which uncovers that our hyper-Laplacian
reflectance priors are able to eliminate both underwater struc-
tural ambiguity and underwater color distortions. For structural
enhancement, our method yields higher numbers of restored
visible edges than other methods, and our UISM values are
ranked top in most cases. For contrast enhancement, the Conl

of our method is ranked best for all cases, and our UIConM
values are best in most cases. For color distortion removal, our
LOE values are lower than those of most comparison methods.

Moreover, Fig. 12 reports three metrics PSNR, RMSE
and LOE to quantify color correction accuracy of different
methods. We first extract the color block part in these results,
and then match the size and orientation of color block part
to the ground-truth ColorChecker of the 24 X-Rite Chart
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Fig. 12. Evaluation of color correction accuracy. (a) Ground truth, (b) VRE [3], (c) UDCP [10], (d) IBLA [11], (e) CBF [17], (f) GDCP [12], (g) UWCNN [27],
(h) Waternet [28], (i) L1 [6], and (j) Ours.

TABLE II

METRICS (UISM ↑ | UICONM ↑ | Conl ↑ | NVE ↑| LOE ↓) OF DIFFERENT METHODS FOR ENHANCING UNDERWATER IMAGES OF DIFFERENT COLORS.
THE BEST RESULT IS IN RED UNDER EACH CASE. ‘−’ INDICATES THE RESULT IS NOT AVAILABLE

Fig. 13. User study for different methods on the 60 challenging underwater
images from UIEBD [28].

image. The PSNR and RMSE are computed using the adjusted
color block part and the ground-truth ColorChecker. We take
the above similar operation to compute the LOE, but the
difference is that the matching reference is the raw input
image. As shown in Fig. 12, our method yields higher PSNR,
lower RMSE, and lower LOE, which verifies the superiority
of hyper-Laplacian reflectance priors in color and naturalness
restoration accuracy.

In addition, we conduct a user study to assess visual results
of different methods on the 60 challenging underwater images.
We invite 100 volunteers to score the perceptual quality of the
enhanced images by different methods. All participants are
separately asked to score each image from 1 to 5 according
to the visual quality, where 1 denotes the worst quality and

Fig. 14. Ablation study. UIQM|UCIQE are shown below and best results
are red.

5 is the best quality. The visual quality relies on the results
of color restoration and naturalness, structure and contrast
improvement, artifacts and noise removal. Fig. 13 shows aver-
age scores of the results by each method on these challenging
underwater images. As compared in Fig. 13, our method gains
highest average score, which suggests that our method yields
better results in a subjective study.

C. Ablation Study

To demonstrate the effect of each component in our model,
we conduct an ablation study on two underwater images of
different typical degradations, including the following exper-
iments: 1) our model without retinex variational enhance-
ment and illumination adjustment (Ours-typeI), 2) our model
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Fig. 15. Different norm comparison of reflectance penalty.

TABLE III

RUNTIME COMPARISON FOR DIFFERENT METHODS. THE BEST RESULT IS

IN RED UNDER EACH CASE

without illumination adjustment (Ours-typeII), 3) our full
model (Ours). Fig. 14 displays enhanced results of Ours-
typeI, Ours-typeII, and Ours, and the corresponding UIQM
and UCIQE are reported below each image. As shown, Ours-I
removes color casts and improves UIQM and UCIQE values.
Ours-II boosts image structures and color restoration, mean-
while, UIQM and UCIQE values are further improved. Ours
recovers more details and color naturalness, and is superior
to Ours-II and Ours-I. Our full model yields best UIQM and
UCIQE that exhibit the positive effect of each component in
our model.

Furthermore, Fig. 15 shows different norm comparison of
reflectance penalty under our model. Compared with both
Gaussian and Laplacian reflectance priors, hyper-Laplacian
reflectance priors yields higher UIQM and UCIQE. The l1/2
norm better approximates empirical statistics of multi-order
gradient of the reflectance, and is more accurate than the l2 and
l1 norms for the reflectance penalty. This consequence further
validates our motivation.

D. Runtime Comparison

We compare the runtime of different methods in Table III.
Two deep learning-based methods UWCNN and Waternet are
run on a Ubuntu 16.04 PC with an NVIDIA GeForce GTX
1080Ti GPU, and the average runtime of each method is
executed one hundred times on images of different sizes.
The rest traditional methods are run on a Windows 10 PC
with Intel Core i7-10700K CPU at 3.79 GHz, 32G RAM
and Matlab R2020a, and the average runtime of each method
is executed one hundred times on images of different sizes.
As shown in Table III, deep learning-based methods have obvi-
ous speed advantages thanks to the GPU acceleration. Based
on fast element-wise operations and independent of additional
underwater priors, our method achieves a competitive-to-better
runtime when compared with other traditional approaches. The

Fig. 16. Application examples of underwater image segmentation (top
row), saliency detection (second row), keypoint detection (third row), and
depth estimation (bottom row). (a) Raw. (b) IBLA [11]. (c) GDCP [12].
(d) UWCNN [27]. (e) Waternet [28]. (f) Ours.

Fig. 17. Enhancement of different types of low-quality images.

fast processing speed and simple implementation pipeline of
our method would benefit many practical applications.

E. Application Test

We show the utility of our method for several challeng-
ing applications without any parameter fine-tuning. First,
we respectively adopt a superpixel-based clustering algo-
rithm [45] and a graph-based manifold ranking method [47]
to segment the enhanced results using different methods and
detect corresponding saliency. In Fig. 16, the segmentation
images of our method are more consistent and accurate than
those of other methods, and our advantage is remarkable in
the places of foreground objects and segmentation boundaries.
Meanwhile, the saliency maps by our method contain more
salient objects and better boundaries compared to those of
other methods. These tests suggest that the proposed method
is more effective for improving the performance of both under-
water image segmentation and underwater saliency detection.
Then, we respectively use the SIFT keypoint detection [46]
and the transmission estimation [48] to detect underwater
keypoints of the enhanced images by different methods and
estimate the corresponding depth maps. In Fig. 16, our method
substantially yields both more keypoint numbers and more
accurate depth maps than other competitors. These results
demonstrate that the proposed method recovers more crucial
features that are beneficial to subsequent underwater object
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detection and recognition. Last, the proposed method is com-
pared with the two leading retinex models [14], [18] in
enhancing low-light, underwater, sandstorm and hazy images.
As shown in Fig. 17, better visibility and more details are
enhanced by the proposed method, which suggests the better
generalization of our method in enhancing different types of
low-quality images.

VI. CONCLUSION

We have presented a hyper-laplacian reflectance pri-
ors for underwater image enhancement. In the proposed
hyper-laplacian reflectance priors, 1) the l1/2-norm is more
accurate to penalize multi-order gradients of the reflectance,
which improves underwater image edges and details and
recovers the authentic color naturalness; and 2) the l2 norm is
effective to enforce spatial smoothness and linear smoothness
on the illumination. Extensive experiments show the superior-
ity of our method in both qualitative and quantitative results.
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